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Abstract
We report analytical calculations of the Helmholtz free energy of non-integrable
anisotropic quantum XXZ chains in the high-temperature regime for several
values of the spin S. Single-ion anisotropy and interaction with an external
magnetic field are taken into account. The seven lowest-order terms in the
high-temperature expansion of Helmholtz free energy are obtained. Our
results contribute to the existing literature on high-temperature expansions and
numerical studies of those models by discussing the effects of anisotropy upon
their high-temperature thermodynamic properties, such as the average energy
per site, the specific heat and magnetic susceptibility.

1. Introduction

One-dimensional quantum spin chains have been extensively studied by condensed matter
physicists for many decades from both theoretical and experimental points of view. In
particular, a number of exact results about the thermodynamic quantities have been obtained
for S = 1/2 [1] through the thermodynamic Bethe ansatz technique, and for the classical
Heisenberg chain (S → ∞), originally solved by Fisher [2]. Unfortunately, systems with an
intermediate value of S cannot be solved by the Bethe ansatz technique and still offer resistance
to analytical methods.

After Haldane’s conjecture [3] in 1983, there has been renewed interest in this field,
since half-odd-integer spin chains would behave as gapless excitations with power-law
decay in the spin correlations, whereas integer spin chains would show an excitation gap
and exponentially decaying correlations. The existence has been verified of higher-spin
quasi one-dimensional magnetic systems such as CsVCl3 and CsVBr3 (S = 3/2) [4–6]
(investigated by inelastic neutron scattering), (2, 2′-bipyridine) trichloromanganese (III), or
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simply denoted by (C10H8N2)MnCl3 (S = 2) [7], and (CD3)4NMnCl3, usually denoted by
TMMC (S = 5/2) [8, 9]. All these antiferromagnetic structures exhibit nearly ideal one-
dimensional behaviour over a considerable range of temperature. Encouraged by these features,
the magnetic and thermodynamic properties of higher-spin chains were first investigated
numerically for the antiferromagnetic spin S = 3/2 chain using the quantum Monte Carlo
(QMC) method (by Itoh et al [5, 6]), the density matrix renormalization group (DMRG) method
(by Moukouri and Caron [10]) and the thermodynamic density matrix renormalization group
(TDMRG) method (Xiang [11]). Yamamoto investigated the thermodynamic properties of the
antiferromagnetic XXZ S = 2 chain using the QMC [12] method; more recently, he applied
the modified spin wave theory to this model [13]. For higher-spin models (S � 5/2) there are
also some reports about exact numerical diagonalization for small rings with N = 5 that were
developed [14] before Haldane’s conjecture. In 1989 Kim et al [15] used the numerical QMC to
study the thermodynamic properties of spin models up to S = 5/2. Recently the semiclassical
approach [16] was applied to study the thermodynamic properties of the antiferromagnetic
and ferromagnetic XXZ chains, at their isotropic points. Very recently, Fukushima et al [17]
obtained the specific heat and magnetic susceptibility of a ferromagnetic mixed-spin model
with two kinds of spins, s and S, arranged alternately and coupled by a Heisenberg-type
nearest-neighbour exchange for arbitrary values of s and S. They obtained numerical results
through the exact diagonalization method and the analytical high-temperature expansions for
both thermodynamic functions at the isotropic point (ferromagnetic exchange) for arbitrary
values of s and S. Their high-temperature expansion of the specific heat, in the absence of an
external magnetic field, goes up to (β J )11 and their expansion of the magnetic susceptibility,
calculated at vanishing magnetic field, goes up to (β J )6 with a single-ion anisotropy term in
one of the spins. With s = S the thermodynamic quantities calculated by Fukushima et al
reduce to those of isotropic XXZ spin-S model.

The Hamiltonian of the anisotropic spin-S XXZ chain is

H =
N∑

i=1

J (Si , Si+1)� − hSz
i + D(Sz

i )
2, (1)

where we use the notation (Si , Si+1)� ≡ Sx
i Sx

i+1 + Sy
i Sy

i+1 + �Sz
i Sz

i+1. Here, Sx
i , Sy

i and Sz
i stand

for the spin-S matrices in the i th site of the chain; N is the number of sites in the periodic chain;
� is the anisotropy constant in the z-direction; h is the external magnetic field in the z-axis
and D is the single-ion anisotropy parameter. For S � 1 there may be non-trivial higher-order
anisotropic single-ion terms, e.g. in the case of thin ferromagnetic films [18, 19]. For this
material, in addition to the single-ion anisotropy term D(Sz

i )
2, we take into account the single-

ion quartic term K (Sz
i )

4. The method of Rojas et al for calculating the β-expansion of the
Helmholtz free energy can be extended in order to incorporate this quartic (and higher-order)
single-site term. In the present paper we restrict our discussion to the simplest case of the
Hamiltonian (1), which models many quasi-1D materials [20].

Numerical and analytical results can be found in the literature about the high-temperature
thermodynamic properties of quantum spin models at the isotropic points. The aim of the
present communication is to study the effects of anisotropy in the spin-S XXZ model upon
such properties. Both the single-ion anisotropy term and an external magnetic field are taken
into account.

The paper is organized as follows: in section 2 we give a brief description of the
β-expansion method, which allowed us to obtain thermodynamic properties such as average
energy, specific heat and magnetic susceptibility,among others, in the high-temperature region.
In the first subsection of section 3, we compare our results with the classical limit (S → ∞) of
the Heisenberg chain [2] for the isotropic case. We also verify if our results are in agreement
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with the results of [17] for the ferromagnetic chains. In the second subsection of section 3 we
explore our results to include the effect of the anisotropy parameter � and the presence of D
and h in the Hamiltonian (1). Finally, in section 4 we give our conclusions.

2. A survey of the method

It has been recently shown in [21] that an auxiliary function ϕ can be defined from which one is
allowed to systematically obtain the high-temperature expansion of the Helmholtz free energy
for the thermodynamic limit of any one-dimensional chain model subject to periodic boundary
conditions, spatial translation invariance and nearest-neighbour interactions. The coefficients
of such expansion can be obtained for arbitrary order in βn , where β = 1/kT , T is the absolute
temperature and k is the Boltzmann constant. A detailed analysis of the convergence issues
was carried out by Moura-Melo et al [22] for exactly solvable Ising chains.

The auxiliary function approach has also been successfully applied to the study of the
thermodynamic properties in the high-temperature regime of the non-integrable spin-1 XXZ
chain [23].

In the thermodynamic limit, the Helmholtz free energy per site of a quantum spin-S XXZ
chain can be written as the β-expansion [21]

W(β) = − 1

β
[ln (2S + 1) + ln (1 + ξ(β))], (2)

where

ξ(β) =
∞∑

n=0

1

(n + 1)!

∂n

∂λn
(ϕ(λ)n+1)|λ=1 (3)

and the auxiliary function ϕ(λ) is given by

ϕ(λ) =
∞∑

m=1

∞∑
n=m

(−β)n

λm
H (n)

1,m . (4)

The functions H (n)

1,m correspond to the ‘connected’ strings with n operators Hi,i+1 (H =∑N
i=1 Hi,i+1) so that m of them are distinct, that is,

H (n)

1,m =
n∑

{ni }
′′
〈 m∏

i=1

Hni
i,i+1

ni !

〉
g

. (5)

The notation
∑n′′

{ni } stands for the restriction
∑m

i=1 ni = n and ni �= 0 for i = 1, 2, . . . , m.
The index m satisfies the condition 1 � m � n. The g-traces can be related to the normalized
traces

〈Hn1
i1,i1+1Hn2

i2,i2+1 · · · Hnm
im ,im+1〉g ≡ n1! · · · nm!

n!

∑
P

〈P(Hn1
i1,i1+1, Hn2

i2,i2+1, . . . , Hnm
im ,im +1)〉, (6)

where
∑m

i=1 ni = n with ni �= 0 and the indices ik , k = 1 · · · m are all distinct. By definition,
〈P(Hi1,i1+1, Hi2,i2+1, . . . , Him ,im +1)〉 represents the normalized traces of all distinct permutations
of the n operators inside the parentheses. We refer the reader to [21] for details of this approach.
In appendix D of [21] the function H (n)

1,m can be found written in terms of the normalized traces
for n, m = 1, . . . , 4.
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3. The high-temperature behaviour of the quantum spin-S XXZ chain

The thermodynamic properties of the quantum spin-S XXZ chain, in the high-temperature
region can be described in terms of a β-expansion series. We apply the method of [21] to
obtain the β-expansion of the Helmholtz free energy of Hamiltonian (1) for arbitrary values
of J , �, h and D. We present in the appendix our results for the Helmholtz free energy per
site Ws(β), up to order (β J )6, for several values of spin S (namely, S = 3/2, 5/2, 3, 7/2 and
4). We presented elsewhere [24] the Helmholtz free energy of the spin-2 XXZ chain. In [24]
we compared our results for S = 2 with the numerical QMC results of the antiferromagnetic
chain obtained by Yamamoto [12]. For the sake of completeness, we include here the S = 2
case and explore the effects due to the presence of anisotropy in the spin-2 XXZ chain, not
considered in [12]. From each expression of the free energy Ws(β) contained either in the
appendix or in [24], it can be readily seen that the simultaneous change of sign � → −�

and D → −D will only affect the even-power coefficients β2m , for m = 1, 2, . . ., which in
turn will get an overall sign. Those changes in sign yield different thermodynamic behaviours
associated with the model in the high-temperature regime, corresponding to its distinct phases.

Due to the fact that the β-expansion of the Helmholtz free energy of the spin-S XXZ chain
is analytical in the parameters J,�, D and in the external magnetic field h, thermodynamic
functions can be obtained from it by suitable derivatives of Ws(β) such as the average energy,
the specific heat, the magnetic susceptibility, the average of the squared z-component of
magnetization, and the first-neighbours z-component of the spin correlation function.

The range of validity in β of our high-temperature expansions certainly depends on the
choice of values for the set of parameters in the Hamiltonian (1). We take J > 0 and let �

refer to either the ferromagnetic (� < 0) or the antiferromagnetic (� > 0) phases.
Finally we rescaled all the constants in the Hamiltonian (1), so that our expansion of the

Helmholtz free energy is expressed in powers of the product Jβ.

3.1. Thermodynamics at the isotropic points (� = ±1)

The classical limit of the spin models corresponds to having S → ∞ in the Hamiltonian (1).
In 1964 Fisher [2] solved this limit exactly for the isotropic cases (� = ±1), with D = 0
and h = 0. In order to accommodate the limit S → ∞ to the thermodynamics of the
Hamiltonian (1), it is conveniently rewritten it in terms of the unit vectors si ≡ Si/

√
S(S + 1).

We replace each Si by its corresponding unit vector si in the Hamiltonian (1); the constant J
is replaced by J → J S(S + 1). In the classical limit (S → ∞) the expression of the specific
heat for � = ±1 is [2]

C(S → ∞, T ) = 1 − (J/kT̃ )2

sinh2(J/kT̃ )
. (7)

We have T̃ ≡ T/S(S + 1).
From our β-expansions (contained in the appendix) we obtain the expressions for the

specific heat per site for S = 3/2, . . . , 4, in the high-temperature region (C(S, T ) =
−β2∂2(βWs(β))/∂β2).

Figure 1 shows the specific heat per site as a function of kT , with � = 1, h = 0 and
D = 0. The four curves correspond to distinct values of S. The range of kT shown in
figures 1(a) and (b) is that in which the expansions are reliable; those plots show that the
specific heat per site for distinct values of S has distinct orders of magnitude. Figure 1(c)
shows the specific heat per site for S = 3/2 and 5/2 in a larger interval of kT , where both
expansions are valid. A suitable normalization allows us to plot together and compare the
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Figure 1. Specific heat per site as a function of kT , for D = 0, h = 0 and � = 1, for distinct
values of S. The range of kT in figures (a) and (b) is the range in which all four expansions are
valid. In figure (c) the curves of figure (b) are extended up to kT = 8, showing their behaviour at
higher temperatures.

curves of the specific heat per site for S = 3/2, 2, . . . ,∞. In figure 2 we have the specific heat
times (kT̃ )2 as a function of 1/kT̃ for the isotropic points (� = ±1) of the spin-S Heisenberg
chain. They are compared with the classical limit result (7). The isotropic ferromagnetic
point (� = −1) and isotropic antiferromagnetic point (� = 1) for D = 0 and h = 0 are
plotted separately. For � = −1, we verify that as we increase the value of S in C(S, T )(kT̃ )2

it approaches the classical limit (S → ∞) (solid curve) from below. For � = 1 that same
thermodynamic function monotonically approaches the classical limit curve from above. The
curves of C(S, T ) for the antiferromagnetic chains get closer to the C(∞, T ) as S increases
faster than the curves of the ferromagnetic chains do. We can also conclude that the higher
the value of S, the closer the behaviour of ferromagnetic and antiferromagnetic phases in the
high-temperature region. In the S → ∞ limit, according to equation (7), the phase becomes
irrelevant to this thermodynamic function. Our β-expansion results for � = −1 are valid up
to 1/kT̃ ∼ 1, whereas for � = 1 its validity goes up to 1/kT̃ ∼ 1.5. In order to determine
the range of β in which the expansion of a given thermodynamic function is valid, we have let
the relative weight of its highest-order term be 5% at most.

Fisher [2] also obtained the expression for the magnetic susceptibility at the isotropic
points, namely,

χ(S → ∞, T ) = 1

3kT̃

1 + u(S, T )

1 − u(S, T )
(8)

where u(S, T ) is given by

u(S, T ) = coth

(
J

T̃

)
− T̃

J
, (9)

with T̃ = T/S(S + 1).
The relation between the magnetic susceptibility χ(S, T ) and the Helmholtz free energy

is χ(S, T ) = −∂2Ws(β)/∂h2. In figure 3 we display the static magnetic susceptibility
(χ(S, T )|h=0) times kT̃ versus 1/kT̃ at the isotropic ferromagnetic point for a set of spins
from S = 3/2 up to 4 and the classical limit S → ∞ (solid curve). For the ferromagnetic case
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Figure 2. Specific heat per unit of 1/k2 T̃ 2 (where T̃ ≡ T/S(S + 1)) as a function of 1/kT̃ , for the
following values of spin S = 3/2, 2, 5/2, 3, 7/2, 4, and for the limit case S → ∞, for the isotropic
cases (� = ∓1). We take D = 0, and h = 0.

Figure 3. The static magnetic susceptibility times kT̃ as a function of 1/kT̃ , for a set of spin values
S = {3/2, 2, 5/2, 3, 7/2, 4, ∞}, for the isotropic case (� = ±1).

(� = −1) the curves of the static magnetic susceptibility times kT̃ for all the spin-S models
under consideration are equal up to 1/kT̃ ∼ 0.5, whereas for 1/kT̃ � 0.5 the curves begin
to split. For the antiferromagnetic case (� = 1) we have an identical behaviour in the region
1/kT̃ ∼ 0.75. The curves of each spin-S are not visually distinguishable in those plots, but
if one takes the difference between two curves with different values of spins it is not null;
e.g. the difference between the magnetic susceptibility of the model with spin S = 3/2 and
S → ∞, at 1/kT̃ = 0.45, is 0.8%, whereas the difference between the same thermodynamic
function for S = 3/2 and 4 is 0.6%. For lower normalized temperature, 1/kT̃ = 0.75, the
difference between the magnetic susceptibility of S = 3/2 and S → ∞ increases to 2%; the
same difference for the S = 3/2 and 4 cases goes to 1.5%.

The correlation function of the z-component of the spin between nearest neighbours for
isotropic spin models in the classical limit is given by [2]

〈Sz
i Sz

i+l〉(S → ∞, T ) = 1
3 u(S, T )|l|, (10)

where the function u(S, T ) is given by equation (9) and l = 0, 1, 2, . . ..
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Figure 4. The absolute value of the correlation function 〈Sz
i Sz

i+1〉 times kT̃ is plotted as a function

of 1/kT̃ for � = −1 and 1.

The correlation function 〈Sz
i Sz

i+1〉 can be derived from the Helmholtz free energiesWs(β),
whose expansions are given in the appendix, that is 〈Sz

i Sz
i+1〉 = ∂Ws(β)/∂�. In figure 4 we plot

the scaled absolute value of the correlation function between nearest neighbours kT̃ |〈Sz
i SZ

i+1〉|
as a function of 1/kT̃ . For � = −1 a bigger splitting (slow convergence in the values of S)
is shown between the curves of consecutive spins compared with the approximations of the
curves for different values of S at � = 1. The classical limit of the spin model (solid curve)
is much closer to the curves of the antiferromagnetic chains. For the ferromagnetic chains our
β-expansions are valid up to 1/kT̃ ∼ 1 and for the antiferromagnetic chains our β-expansions
are valid up to 1/kT̃ ∼ 1.5.

We also compared our results derived from the Helmholtz free energies,whose expressions
are given in the appendix, with the results of Fukushima et al [17]. Our results are fully in
agreement with the analytical results of [17] for the S = s high-temperature expansion of the
specific heat and the magnetic susceptibility.

3.2. Thermodynamics off the isotropic points (� �= ±1)

From now on we consider thermodynamic quantities taking into account the presence of the
anisotropic constant � in the Hamiltonian (1) and including in it the single-ion anisotropy term
and an external magnetic field.

The plots of the average energy E(S, T ) (E(S, T ) = ∂Ws(β)/∂β) times kT̃ versus 1/kT̃
from S = 3/2 up to 4 are displayed in figure 5 for the anisotropic parameters� = ±2 and ±1/2.
For the ferromagnetic chains (� = −1/2 and −2) the curves of kT̃ E(S, T ) are well separated
and move apart as the temperature is lowered. For the antiferromagnetic cases (� = 1/2 and
2), the curves are closer to one another and as the temperature decreases the curves tend to
narrow the difference between them. Our β-expansions for the ferromagnetic case are valid
up to 1/kT̃ ∼ 0.5 whereas for the antiferromagnetic chains they are valid up to 1/kT̃ ∼ 1.

In order to exemplify the effect of the anisotropic parameter � upon thermodynamic
functions of spin-S XXZ models, the specific heat at a fixed temperature in units of S(S + 1)

is displayed in figure 6. The quantity k2 T̃ 2C(S, T ) is plotted as a function of the anisotropic
parameter � for the set of spins from S = 3/2 up to 4. The rescaled temperature at kT̃ = 4/3
and 5/3 is taken; in all plots, h = 0. The distance between any two curves in the region
� < −1 goes to zero as the spin increases for both values of D. For the case � > 1 the curves
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Figure 5. The average energy times kT̃ as a function of 1/kT̃ for the spin-S model for S = 3/2
up to 4 with the anisotropic parameter taking the values � = ±1/2, ±2.

Figure 6. The specific heat C(S, T ) times k2 T̃ 2 is plotted as a function of anisotropic parameter
�, for two fixed temperatures in units of S(S + 1), kT̃ = 5/3 and 4/3 with D = 0 and 1/2. In all
plots h = 0.

are almost superimposed on one another. In the interval |�| < 1 there exists a minimum,
located at � ∼ 0 for D = 0 (the spin-S XX chain [25, 26]). In the ferromagnetic region
the spreading of curves is more significant than in the antiferromagnetic region, mainly in the
presence of a non-null D and lower temperatures.

In figure 7 we present the magnetic susceptibility times kT̃ as a function of the anisotropic
parameter � at fixed rescaled temperatures in the presence and absence of the single-ion
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Figure 7. The magnetic susceptibility times kT̃ as a function of anisotropic parameter � for two
fixed temperatures kT̃ = 2/3 and 1, with D = 0 and 0.5. In all plots h = 0.

anisotropy term. It shows curves for spin values S ranging from 3/2 to 4; in all plots we have
h = 0. For � < 1 the curves are a monotonically decreasing function of �, but decreasing
more slowly in the antiferromagnetic region. There is no minimum of the amount kT̃χ(S, T )

as a function of the anisotropic parameter �. In the presence of the single-ion anisotropy term
with D = 0.5, the main qualitative characteristics of the curves still remain. From the range
of validity of our results, it is not clear whether this function will increase for higher values of
�.

In figure 8 we display the on-site correlation function 〈(Sz
i )

2〉 per unit of S(S + 1) as a
function of the anisotropy parameter � at a fixed temperature in units of S(S + 1), that is
kT̃ = 2/3. In the plot corresponding to D = 0 and h = 0 we are able to verify that, at
the isotropic points � = ±1, the quantity 〈(Sz

i )
2〉 has the constant value S(S + 1)/3 for any

value of S in the whole interval of temperature, since at this point (with D = 0 and h = 0)
〈(Sx

i )2〉 = 〈(Sy
i )2〉 = 〈(Sz

i )
2〉 = 1

3 〈(Si )
2〉 = 1

3 S(S + 1). The purpose of this figure is to
show how this function becomes dependent on the temperature and how the curves begin to
deviate from one another as the parameter � leaves the isotropic point. If we include the effect
due to the presence of an external magnetic field, but keeping D = 0, the function 〈(Sz

i )
2〉

continues to be constant at � = 1 but this constant becomes h-dependent. When we include
the contribution of the single-ion anisotropy term with D = −1 and h = 0, there is no more
intersection of curves and the on-site correlation per units of S(S + 1) exhibits systematically
increasing functions as the spin increases. For the single-ion anisotropy parameters D = 1
and h = 0, the plots exhibit different behaviour in comparison to the case D = −1: now the
curves decrease as the value of the spin increases and all the curves for different values of S
in the regions |�| > 1 tend to superpose.

Finally in figure 9 we plot the ratio of the absolute value of the correlation function between
first neighbours and the on-site correlation function of the z-component of the spin, based on
equation (10), which gives the correlation function between first neighbours for S → ∞ as
a power-law decay. Hence, the family of curves to be plotted could be of the same kind as
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Figure 8. The on-site correlation function per unit of S(S + 1) as a function of the anisotropic
parameter for a fixed temperature kT̃ = 2/3 for (D, h) = {(0, 0), (−1, 0), (0, 1), (1, 0)}.

the u(S, T ) functions for higher values of S. In all plots we considered the two anisotropic
points � = ±1/2. In each graph the case � = 1/2 corresponds to the set of curves that
decrease as the value of S increases and the case � = −1/2 corresponds to the curves that
increase as the value of S increases. The set of curves (for S ranging from 3/2 to 4) at each
anisotropic point are well separated in each plot of figure 9. As the spin value S increases, the
curves for � = ±1/2 get closer together (as it should be, because in the limit S → ∞ they
are described by the same function). For � = −1/2 the presence of an external magnetic field
makes the curves of distinct values of S get closer together, in the high-temperature region.
This approximation between curves is stronger when D > 0. For � = 1/2 the curves get
closer for distinct values of S, in the presence of D and an external magnetic field.

4. Conclusions

In summary, we discuss the thermodynamics of the anisotropic spin-S XXZ chain with a single-
ion anisotropy term in the presence of an external magnetic field in the high-temperature region.
We obtain the analytical β-expansion of the Helmholtz free energies for S = 3/2, 5/2, 3, 7/2
and 4, up to order β6. From those free energies we obtain some thermodynamic functions,
e.g. the specific heat, magnetic susceptibility and the correlation function of the z-component
of the spin between first neighbours, among others. Recently, Fukushima et al [17] obtained
the high temperature expansion of the specific heat and the magnetic susceptibility of a mixed
ferromagnetic chain (� = −1) with two alternating kinds of spin, Si and si , in a unit cell
along the chain for arbitrary values of s and S. When the spins Si and si are the same,
their calculation gives the β-expansion of the specific heat (in the absence of the single-ion
anisotropy term and the external magnetic field) up to (β J )11 and the magnetic susceptibility
(at h = 0) up to order (β J )6 of the isotropic ferromagnetic spin-S XXZ model. From our
results we recover for the spin-S models, for the values of S considered in this paper, their
results up to order (β J )4 for the specific heat and the magnetic susceptibility and extend them
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Figure 9. The absolute value of the correlation function between first neighbours times kT divided
by 〈(Sz

i )2〉 is plotted versus 1/kT̃ for anisotropic (� = ±1/2) ferromagnetic and antiferromagnetic
points for D = −0.5, 0.5 with h = 0 and 0.5.

to the anisotropic models including the contribution of the single-ion anisotropy term and an
external magnetic field.

We also compare our results, at the isotropic points (�± 1), with the classical spin model
(S → ∞). We show that as the value of S increases, the curves of the thermodynamic functions
approach those of the S → ∞ spin model.

Off the isotropic points (� �= ±1) we show how the thermodynamic functions depend on
the anisotropic constant �, the single-ion anisotropy parameter D and the external magnetic
field h. The comparisons are performed at a suitably rescaled temperature T̃ that is kept fixed.
In doing so, we show how the thermodynamic functions behave in the high-temperature region
in the distinct phases of the anisotropic spin-S model.

As a final comment, we should say that in the nice calculations done by Fukushima
et al in [17] it is essential that the model be invariant under rotation in order to simplify
the calculation of the coefficients of their β-expansions. Those simplifications allow
the β-expansion of the magnetic susceptibility to be calculated up to (Jβ)6 and that of
the specific heat to be calculated up to (Jβ)11. We stress that our results are valid
off the isotropic point, as well. This offers the interesting possibility of increasing
the number of parameters in the model to fit the experimental data. The price one
pays for not taking advantage of the invariance of the model under rotation is that the
β-expansion of the Helmholtz free could only be obtained up to order (Jβ)6. Nowadays,
our calculations are limited by the RAM available on our personal computers. We hope in the
near future to extend the order in β of our high-temperature expansion of the Helmholtz free
energy of the anisotropic XXZ model.
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Appendix. β-expansion of the free energy for the higher spin-S XXZ chain

In this appendix we present [27] the high-temperature expansions of the Helmholtz free energies
per site Ws(β), up to order n = 7, for spin S, where S = 3/2, 5/2, 3, 7/2 and 4 for arbitrary
sets of values for the parameters of the Hamiltonian (1).

For spin S = 3/2:

W3/2(β) = − ln(4)β−1 + 5
4 D +

(− 25
32�2 − 5

8 h2 − 25
16 − 1

2 D2)β
+

(− 25
64� + 5

4�2 D + 1
2 h2 D − 5

4 D + 25
16�h2)β2 +

(
17

192 h4 + 65
64 h2 + 371

1536 + 3
8 D2

+ 1
12 D4 − 1

2�2 D2 − 1103
3072 �4 − 165

64 �2h2 − 5
2 �h2 D + 737

384�2)β3 +
(

83
16 �2h2 D

− 85
96�h4 − 3

8 h2 D + 755
3072 �3 + 1489

384 �3h2 + 325
192 D − 15

8 �2 D − 5
12 �2 D3

+ 35
192�4 D − 5

24 h4 D + 755
1536� + 1

32�D2 + �h2 D2 − 533
128�h2 − 1

6 h2 D3

+ 2
3 D3)β4 +

(− 4895
1024 �4h2 + 2221

30 720 �4 − 373 003
122 880�2 + 3355

36 864�6 + 1
8 h4 D2

+ 67
24�h4 D − 1

45 D6 + 1021
960 D2 − 19

120 D4 + 389
960�D − 333

160 �2 D2 − 389
960�3 D

+ 5
6�h2 D3 + 1

3�2 D4 − 33
32 h2 D2 + 101

96 �4 D2 + 2111
512 �2h4 + 1

240�D3 + 3995
512 �2h2

+ 9
2�h2 D − 25

8 �2h2 D2 + 11 719
46 080 − 13

576 h6 − 205
24 �3h2 D − 209

384 h4 − 685
512 h2

)
β5

+
(− 109 319

245 760� + 1069
2304�h6 − 2019 683

172 032 �3h2 + 1
15 h2 D5 + 5

72 h4 D3 + 61
720 h6 D

+ 329 435
1032 192 h2 D3 − 35

12�h4 D2 − 2
3 �h2 D4 + 34 679

368 640�5 − 143 653
430 080 D5

− 33 148 757
20 643 840 D3 − 59

48�2h2 D3 − 726 245
516 096 h2 D + 29

32 h4 D + 3666 913
516 096 �h2

− 15 665
1152 �3h4 + 3910 241

1032 192 �h2 D2 − 1475
96 �2h4 D + 8573

768 �4h2 D − 466 673
368 640�3

+ 5701 951
1474 560�4 D + 9481 141

3440 640 �2 D3 + 1
6�2 D5 − 153 179

92 160 �2 D − 361
5120 �D2

+ 17 827
107 520�3 D2 − 11 215 537

1032 192 �2h2 D − 4397
4608�6 D + 31

6 �3h2 D2 + 3
160�D4

− 755
576�4 D3 + 212 741

36 864 �h4 + 31 445
6144 �5h2 − 12 814 579

10 321 920 D
)
β6 + O(β7). (A.1)

For spin S = 5/2:

W5/2(β) = − ln(6)β−1 + 35
12 D +

(− 1225
144 − 28

9 D2 − 35
24 h2 − 1225

288 �2)β
+

(
1225
144 �h2 + 28

9 h2 D + 490
27 �2 D + 80

81 D3 − 1225
576 � − 490

27 D
)
β2 +

(− 365 687
27 648 �4

+ 259
576 h4 + 19 355

1728 h2 − 980
27 �h2 D + 32 977

41 472 − 28�2 D2 + 196
81 D4 + 565 019

10 368 �2

− 58 555
1728 �2h2 − 40

27 h2 D2 + 217
27 D2

)
β3 +

(
62 125

648 D + 28 315
648 �4 D − 833

324 �D2

− 217
27 h2 D + 48 265

4608 � − 392
81 h2 D3 − 11 305

81 �2 D − 9065
864 �h4 − 25

9 h4 D − 560
243 D5

+ 10 087
54 �2h2 D + 1298 843

10 368 �3h2 + 10 402
243 D3 − 2380

243 �2 D3 + 48 265
9216 �3

+ 56�h2 D2 − 390 971
3456 �h2

)
β4 +

(
727 822 177
11 197 440 + 24 962

81 �h2 D − 32 375
81 �2h2 D2

+ 7063
81 �h4 D + 4760

243 �h2 D3 − 192 535
243 �3h2 D − 30 872

10 935 D6 − 2422 385
41 472 h2

− 136 283
10 368 h4 − 1333

5184 h6 + 4808 671
41 472 �2h4 + 22 043 035

41 472 �2h2 − 96 336 625
248 832 �4h2

+ 8617
2430�D3 + 45 521

3240 �D − 45 521
3240 �3 D + 65 204

729 �2 D4 − 2219
36 h2 D2

+ 94 547
972 �4 D2 − 1116 943

4860 �2 D2 − 123 304
3645 D4 + 91 288

405 D2 + 476
81 h4 D2

− 11 724 397 249
29 859 840 �2 − 13 029 335

8957 952 �6 + 168 976 781
2488 320 �4 + 1400

243 h2 D4)β5

+
(− 1951 787 957

59 719 680 � − 18 507 771 191
358 318 080 D + 62 916 601

23 328 �4h2 D − 41 405
36 �2h4 D

+ 100 333
729 �2h2 D3 − 130 408

729 �h2 D4 − 23 170
81 �h4 D2 + 14 393 371 121

35 831 808 �h2 D2

− 24 178 636 835
11 943 936 �2h2 D + 1243 618 822 261

1074 954 240 �2 D3 − 57 557 180 303
89 579 520 �2 D
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+ 16 680 463
466 560 �D2 − 37 156

729 �2 D5 − 3045
4 �4 D3 + 40 876 867 297

39 813 120 �4 D

− 28 559 335
31 104 �3h4 − 12 289 559 251

5971 968 �3h2 + 1603 451 735
1492 992 �5h2 + 28 189

2304 �h6

+ 332 998 967
995 328 �h4 + 5122 720 283

5971 968 �h2 + 7395 323
466 560 �3 D2 − 46 457 117

139 968 �6 D

+ 4594
405 �D4 + 1371 334

729 �3h2 D2 + 679
270 h6 D − 70

243 h4 D3 + 30 872
3645 h2 D5

+ 5621
108 h4 D + 2313 699 323

35 831 808 h2 D3 − 4252 177 889
17 915 904 h2 D + 437 261 279

29 859 840 �5

− 3700 833 073
29 859 840 �3 − 587 896 837

5598 720 D5 − 848 128 834 859
2149 908 480 D3 + 10 976

2187 D7
)
β6 + O(β7).

(A.2)

For spin S = 3:

W3(β) = − ln(7)β−1 + 4D +
(−2h2 − 16 − 8�2 − 6D2)β

+ (16�h2 + 6h2 D + 48�2 D + 22
7 D3 − 48D − 4�)β2 +

(−96�h2 D

− 88�2h2 + 572
3 �2 + 113

14 D4 − 768
7 �2 D2 + 28h2 + 180

7 D2 − 146
3 �4

+ 5
6 h4 − 2 − 33

7 h2 D2)β3 +
(− 101

14 h4 D −16�2 D3 −12�D2 + 3062
7 D + 1420

7 D3

− 392�h2 − 4794
7 �2 D + 1352

3 �3h2 + 34� + 1732
7 �4 D − 113

7 h2 D3 − 185
14 D5

− 180
7 h2 D + 1536

7 �h2 D2 + 17�3 − 80
3 �h4 + 4800

7 �2h2 D
)
β4 +

(
993 199

2205

+ 10 344
7 �h2 D − 15 096

7 �2h2 D2 + 2176
7 �h4 D + 32�h2 D3 − 28 432

7 �3h2 D

− 43 489
2940 D6 − 1769

7 h2 − 935
21 h4 − 817

1260 h6 + 8516
21 �2h4 + 53 720

21 �2h2 − 40 678
21 �4h2

+ 824
35 �D3 + 256

5 �D − 256
5 �3 D + 29 756

49 �2 D4 − 2046
7 h2 D2 + 23 060

49 �4 D2

− 67 152
49 �2 D2 − 56 839

245 D4 + 378 233
245 D2 + 625

28 h4 D2 − 1819 661
735 �2 − 81 169

2205 �6

+ 128 393
245 �4 + 925

28 h2 D4)β5 +
(− 19 049

105 � + 76 843
315 D + 948 652

49 �4h2 D

− 39 572
7 �2h4 D + 82 280

49 �2h2 D3 − 59 512
49 �h2 D4 − 10 288

7 �h4 D2

+ 1067 260
441 �h2 D2 − 30 172 328

2205 �2h2 D + 23 269 096
2205 �2 D3 − 1847 816

315 �2 D

+ 70 113
245 �D2 − 181 852

245 �2 D5 − 1043 656
147 �4 D3 + 2661 271

315 �4 D − 279 016
63 �3h4

− 6093 980
441 �3h2 + 5524 898

735 �5h2 + 13 304
315 �h6 + 492 146

315 �h4 + 1299 891
245 �h2

+ 2314
49 �3 D2 − 296 446

105 �6 D + 18 806
245 �D4 + 703 408

49 �3h2 D2 + 3727
420 h6 D

− 701
84 h4 D3 + 43 489

980 h2 D5 + 1689
7 h4 D + 976 118

2205 h2 D3 − 700 033
441 h2 D

+ 56 797
630 �5 − 227 888

315 �3 − 221 457
245 D5 − 7036 243

2205 D3 + 152 651
2940 D7)β6 + O(β7).

(A.3)

For spin S = 7/2:

W7/2(β) = − ln(8)β−1 + 21
4 D +

(− 21
8 h2 − 21

2 D2 − 441
32 �2 − 441

16

)
β

+
(

441
4 �2 D − 441

64 � − 441
4 D + 8D3 + 441

16 �h2 + 21
2 h2 D

)
β2 +

(− 693
2 �2 D2

− 151 557
1024 �4 + 91

4 D4 + 71 883
128 �2 + 91

64 h4 − 12 789
64 �2h2 + 567

8 D2 + 3969
64 h2

− 7791
512 − 441

2 �h2 D − 12h2 D2)β3 +
(− 146 853

128 �h2 + 777D3 − 1323
32 �D2

− 567
8 h2 D − 21 483

8 �2 D − 1911
32 �h4 − 91

2 h2 D3 − 56D5 + 48 657
1024 �3

+ 693�h2 D2 + 105
4 �2 D3 + 104 307

64 D + 67 557
64 �4 D + 48 657

512 � + 33 327
16 �2h2 D

+ 173 019
128 �3h2 − 131

8 h4 D
)
β4 +

(
12 015 007

5120 + 11 403
2 �h2 D − 71 757

8 �2h2 D2

+ 7413
8 �h4 D − 105

2 �h2 D3 − 131 019
8 �3h2 D − 907

15 D6 − 465 885
512 h2 − 16 443

128 h4
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− 1387
960 h6 + 611 583

512 �2h4 + 5070 555
512 �2h2 − 7878 255

1024 �4h2 + 8799
80 �D3

+ 49 539
320 �D − 49 539

320 �3 D + 3093�2 D4 − 35 973
32 h2 D2 + 55 875

32 �4 D2

− 1036 377
160 �2 D2 − 48 201

40 D4 + 2561 127
320 D2 + 553

8 h4 D2 − 500 089 497
40 960 �2

− 5777 809
20 480 �6 + 29 807 823

10 240 �4 + 140h2 D4
)
β5 +

(− 67 700 717
81 920 � + 750 204 371

163 840 D

+ 26 575 275
256 �4h2 D − 710 157

32 �2h4 D + 182 823
16 �2h2 D3 − 6186�h2D4

− 23 709
4 �h4 D2 + 190 057 743

16 384 �h2 D2 − 5774 469 723
81 920 �2h2 D

+ 11 554 850 001
163 840 �2 D3 − 201 457 011

5120 �2 D + 8202 651
5120 �D2 − 61 593

10 �2 D5

− 3050 299
64 �4 D3 + 1724 320 395

32 768 �4 D − 2199 449
128 �3h4 − 581 312 967

8192 �3h2

+ 406 295 427
10 240 �5h2 + 157 913

1280 �h6 + 121 566 417
20 480 �h4 + 1056 989 643

40 960 �h2

+ 18891
5120 �3 D2 − 45 675 581

2560 �6 D + 12 207
32 �D4 + 159 675

2 �3h2 D2 + 6307
240 h6 D

− 1225
24 h4 D3 + 907

5 h2 D5 + 29 169
32 h4 D + 189 134 217

81 920 h2 D3 − 333 228 711
40 960 h2 D

+ 17 639 391
40 960 �5 − 138 258 281

40 960 �3 − 23 836 641
4096 D5 − 6445 757 611

327 680 D3

+ 5488
15 D7

)
β6 + O(β7). (A.4)

For spin S = 4:

W4(β) = − ln(9)β−1 + 20
3 D +

(− 400
9 − 154

9 D2 − 10
3 h2 − 200

9 �2
)
β

+
(

400
9 �h2 − 6160

27 D + 6160
27 �2 D + 1430

81 D3 − 100
9 � + 154

9 h2 D
)
β2 +

(
41
18 h4

− 2816
3 �2 D2 − 11 080

27 �2h2 + 117 652
81 �2 − 4546

81 + 9185
162 D4 − 715

27 h2 D2

− 12 320
27 �h2 D + 4708

27 D2 − 10 562
27 �4 + 3380

27 h2)β3 +
(

421 850
81 D − 4708

27 h2 D

+ 355
3 �3 − 3280

27 �h4 − 94 315
486 D5 + 286 744

81 �3h2 − 721 270
81 �2 D + 73 040

243 �2 D3

− 9185
81 h2 D3 − 9548

81 �D2 + 148 544
27 �2h2 D − 605

18 h4 D + 299 420
81 �4 D + 710

3 �

+ 615 868
243 D3 + 5632

3 �h2 D2 − 79 768
27 �h2)β4 +

(
108 647 677

10 935 + 1513 688
81 �h2 D

− 2505 800
81 �2h2 D2 + 195 712

81 �h4 D − 146 080
243 �h2 D3 − 13 449 040

243 �3h2 D

− 9066 239
43 740 D6 − 230 095

81 h2 − 26 539
81 h4 − 949

324 h6 + 250 292
81 �2h4 + 2636 600

81 �2h2

− 6254 890
243 �4h2 + 495 704

1215 �D3 + 165 088
405 �D − 165 088

405 �3 D + 9351 260
729 �2 D4

− 33 154
9 h2 D2 + 1283 612

243 �4 D2 − 31 150 768
1215 �2 D2 − 18 589 711

3645 D4

+ 13 692 217
405 D2 + 59 873

324 h4 D2 − 181 963 703
3645 �2 − 3193 415

2187 �6 + 15 620 203
1215 �4

+ 471 575
972 h2 D4)β5 +

(− 11 700 557
3645 � + 2652 703 169

76 545 D + 327 628 268
729 �4h2 D

− 662 860
9 �2h4 D + 41 324 392

729 �2h2 D3 − 18 702 520
729 �h2 D4 − 1621 840

81 �h4 D2

+ 712 785 596
15 309 �h2 D2 − 1514 289 848

5103 �2h2 D + 85 849 022 936
229 635 �2 D3

− 16 027 679 512
76 545 �2 D + 25 787 267

3645 �D2 − 26 919 724
729 �2 D5 − 2269 240

9 �4 D3

+ 751 937 119
2835 �4 D − 13 749 320

243 �3h4 − 217 421 660
729 �3h2 + 123 919 630

729 �5h2

+ 952
3 �h6 + 32 772 686

1701 �h4 + 76 137 109
729 �h2 − 550 066

729 �3 D2 − 197 837 882
2187 �6 D

+ 622 006
405 �D4 + 258 030 256

729 �3h2 D2 + 36 839
540 h6 D − 205 885

972 h4 D3

+ 9066 239
14 580 h2 D5 + 79 541

27 h4 D + 150 347 702
15 309 h2 D3 − 74 699 131

2187 h2 D

+ 12 445 691
7290 �5 − 48 292 496

3645 �3 − 328 827 899
10 935 D5 − 22 620 679 997

229 635 D3

+ 17 390 369
8748 D7)β6 + O(β7). (A.5)
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